
CernVM-FS from a Security Perspective

Jakob Blomer

January 27, 2012

Contents

1 Introduction 1

2 Security Objectives 3

3 Data Integrity and Authenticity 5

4 Implementation Notes 5

5 Customization 9

6 Distribution 9

1 Introduction

The CernVM File System is a caching HTTP file system developed to deliver binary
software directory trees. CernVM-FS is implemented as a FUSE module. It makes a
specially prepared directory tree (repository) stored on a web server (repository server)
look like a local read-only file system on the client machine. The delivered binaries on the
repository server reflect usually the result of a make install. Figure 2 shows general idea
of distributing software with CernVM-FS. Figure 3 shows how CernVM-FS interlocks
with Fuse and a web server in order to deliver files.

A CernVM-FS repository is defined by its file catalog. The file catalog is an SQLite
database having a single table that lists files and directories together with its meta data.
A file catalog is identified by the SHA-1 key of the content of the SQLite database
file. In addition to the POSIX meta data, the file catalog contains SHA-1 keys of the
content of all regular files. These SHA-1 keys are used to access files in the data store
(cf. Figure 1). In this respect, data organization in CernVM-FS is comparable to the
Git version control system.

On the client side CernVM-FS requires only outgoing HTTP connectivity to a web
server and/or an HTTP proxy server. Provided that the files are read only, CernVM-FS

1



Shadow Tree

Repository

/opt/atlas

software

15.6.9

ChangeLog
...

806fbb67373e9...

Data Store File Catalog

Compression, SHA1

Figure 1: Converting a file system tree into a repository. The file catalog contains the
directory structure as well as file metadata, symbolic links, and secure hash
keys of regular files. Regular files are compressed and renamed to their secure
hash key before copied into the data store.

2



Standard SL5
Worker Node

CernVM-FS

SL5 Kernel
Fuse

Hierarchy of
HTTP Caches

Linux
File System Buffers

1GB
CernVM-FS Cache

LRU managed

10GB
Single Release

(all releases available)

Figure 2: Architecture of CernVM-FS. Experiment software is loaded file by file on
demand and is locally cached.

does local file data and file catalog caching. In case files are cached, they are served from
the local disk cache. Otherwise they are loaded on first access file by file via the HTTP
connection. The file data cache is LRU managed.

2 Security Objectives

The following lists assumptions and assertions of CernVM-FS:

1. CernVM-FS trusts the local cache directory. Although we provide a utility to
check local cache integrity (cvmfs_fsck), during runtime CernVM-FS assumes
that it has full and exclusive control over the cache directory and that everything
in there is valid. The content of the cache directory is owned by user cvmfs and
group fuse. It is not accessible by anybody else (except root).

2. Because once data is in the local cache it is considered to be valid, we need CernVM-
FS to check incoming data before committing it to the cache. CernVM-FS relies
on libcurl to handle HTTP downloads. Downloaded files and file catalogs are
stored in a temporary directory and verified against their SHA-1 hash before they
are committed to the cache. For signed file catalogs, the signature and the signing
certificate are verified. For cryptographic routines, CernVM-FS relies on the
libcrypto from OpenSSL. See Section 3 for details.

3. In case of unexpected failures, the impact of the failing CernVM-FS instance shall
be as little as possible to the rest of the system. Therefore, CernVM-FS drops
root privileges on start-up. Furthermore, it forks a watchdog process that creates
a stack trace on failure allowing for post mortem analysis. Such failures as well
as decisions about acceptance or rejection of signed file catalogs are logged to the
syslog facility. See Section 4 for details.

3



open(/ChangeLog)

glibc

VFS
inode cache
dentry cache

ext3

NFS

...

Fuse

libfuse

CernVM-FS

user space

kernel space
syscall /dev/fuse

SHA1

file descr.fd HTTP GET

inflate+verify

Figure 3: Process of opening a file. CernVM-FS resolves the name by means of an SQLite
catalog, which is prepended by a direct-mapped memory cache. Downloaded
files are verified against the secure hash of the corresponding catalog entry. The
read() and the stat() system call can be entirely served from the in-kernel
file system buffers.

4



CernVM-FS does not include any measure to prevent it from targeted attempts
to stop it from fetching new files from the web server. Stopping CernVM-FS from
fetching new files can be achieved by either tampering with the data packets or (easier)
by blocking network access. However, CernVM-FS does include measures to prevent it
from accidental network failures: it can take multiple web server host names as well as
multiple HTTP proxy servers. CernVM-FS automatically tries another host or proxy
server in case it encounters an error. In any case, as long as current data are available in
the cache, CernVM-FS does not produce any network traffic.

CernVM-FS sends a custom HTTP header with all requests. That allows web servers
and proxies to separate and manage CernVM-FS traffic, provided that no other network
entities fake a CernVM-FS header.

3 Data Integrity and Authenticity

In order to provide authoritative information about a repository publisher, file catalogs
may be signed by an X.509 certificate. It is important to note that it is sufficient to sign
just the file catalog. Since every file is listed with an SHA-1 checksum inside the catalog,
we gain a secure chain and may speak of a “signed repository”. Figure 4 shows the trust
chain with a signed repository.

The signature is created using the cvmfs_sign utility. The cvmfs_sign utility takes a
X.509 certificate together with its private key in order to sign a catalog and its nested
catalogs. On the client side, CernVM-FS supports a secure mode in which only validly
signed catalogs are mounted.

In order to validate file catalog signatures, CernVM-FS uses a white-list procedure.
The white-list contains the SHA-1 fingerprints of known publisher certificates and a
timestamp. A white-list is valid for 30 days. It is signed by a private RSA key, which
we refer to as CernVM master key. The master key is kept offline on a secure smart
card at cern. So the security of the master key is ensured by 2-factor authentication
(possession of the smart card and knowledge of the PIN). The smart card is used with a
smart card reader with pin pad. Neither the key nor the pin are ever exposed outside the
scope of those secure devices. The public RSA key that corresponds to the master key is
distributed with the CernVM-FS sources and the CernVM-FS YUM/RPM package as
well as with every instance of CernVM.

4 Implementation Notes

CernVM-FS is written in C and C++ with auxiliary scripts in bash and Perl. The
CernVM-FS C/C++ code base is checked by PH-SFT’s Coverity static code analyzer.
CernVM-FS relies on a couple of standard libraries, all of them part of SL5 (cf. Figure 5).
With CernVM-FS making heavy usage of SQLite, libcurl, and libfuse, several bugs
were discovered in the versions shipped with SL5. So, in the RPM/YUM distribution
these packages are statically linked newer versions.

5



release

manager

certificate
white-list

repository

CernVM-FS +
CernVM public key

fingerprint sign catalog

sign
whitelist

1
download

signed catalog +
signed whitelist2

verify whitelist +
check fingerprint

3
download

files

4
compare secure hash
against catalog entry

Figure 4: Trust chain with a signed repository.

6



Building Blocks

Components

User Interface

zlib SQLite libcurl

libcrypto Fuse redirfs

Catalog Cache Quota / LRU

Trace Capturing VFS Filter

CernVM-FS cvmfs_sync

Figure 5: CernVM-FS block diagram.

7



The mount procedure is handled by automount and results in invoking the cvmfs2
process as follows:

1. A system call on a subdirectory of /mnt/cvmfs is forwarded to automount

2. automount looks for an entry for /mnt/cvmfs in its master map /etc/auto.master,
which is set to /etc/auto.cvmfs

3. The CernVM-FS auto map reads the configuration from /etc/cvmfs and returns
the mount option -fstype cvmfs

4. automount calls mount which in turn calls the mount helper /sbin/cvmfs.mount

5. The mount helper reads the configuration from /etc/cvmfs and assembles the
mount options string for the cvmfs2 process. It starts the cvmfs2 process and sets
the file system type to cvmfs

6. CernVM-FS sets its umask to 007

7. CernVM-FS uses Fuse routines to parse the option string

8. CernVM-FS increases the maximum number of open files for the cvmfs2 process
(default: 32768). This is necessary because all open() requests by other processes
on the mounted file system are channeled through the cvmfs2 process.

9. CernVM-FS changes ownership of the mount point to user cvmfs. This is necessary
to successfully mount as non-root.

10. CernVM-FS drops its privileges to user cvmfs and group fuse.

11. CernVM-FS continues initialization with dropped privileges. This includes spawn-
ing the watchdog process and the actual mount done by libfuse.

Being a Fuse module, CernVM-FS implements a couple of Fuse call-back functions:

stat Requests for file attributes are entirely served from the cached file catalog. This
callback also takes care of the catalog TTL. If the TTL is expired, the CernVM-FS
checks for a newer catalog version, which is loaded on the fly if necessary (re-mount).
Note that a re-mount might possibly break running programs. We rely on careful
repository publishers that produce more or less immutable directory trees, i. e. new
repository versions just add files.

readlink A symlink is served from the file catalog. As a special extension, CernVM-FS
detects environment variables in symlink strings written as $(VARIABLE). Those
variables are expanded by CernVM-FS dynamically on access. This way, a single
symlink can point to different locations depending on the environment. This is
helpful, for instance, to dynamically select software package versions residing in
different directories. The evaluation of the environment variable is done in the
context of the cvmfs2 process, i. e. it is determined as of cvmfs2 process creation.

8



readdir A directory listing is served by an SQL query on the file catalog.

open / read The open() call has to provide Fuse with a file handle for a given path
name. In CernVM-FS file requests are always served from the disk cache. If
the file is not in the disk cache, it is downloaded from the repository first into a
temporary path. CernVM-FS uses mkstemp() for temporary files. Once verified,
the downloaded file is atomically committed to the cache by a rename() call. If the
verification fails, the temporary file is unlinked and and I/O error is returned.

The Fuse file handle is a read-only file descriptor valid in the context of the CernVM-
FS process. It points into the disk cache directory. Read requests are translated
into the pread() system call.

CernVM-FS is capable of communicating to the user at runtime. Thereby certain
parameters can be checked and configured while the file system is mounted. To do so,
CernVM-FS sets up a temporary socket in the cache directory, cvmfs_io. Access is
controlled by the access rights to this file, which is owned by user cvmfs and group fuse
and has mode 660. The communication is based on a simple command-response scheme.
The cvmfs-talk Perl script takes care of writing to and reading from the socket.

5 Customization

CernVM-FS comes with a default configuration installed in /etc/cvmfs. This configu-
ration consists of parameters and mount/unmount helper functions. The local customiza-
tion of CernVM-FS is controlled by “plug-in” files in /etc/cvmfs. For the repositories
at CernVM we provide default customizations by the separate RPM/YUM package
cvmfs-init-scripts.

6 Distribution

CernVM-FS is distributed as yum package via our yum repository at http://cvmrepo.
web.cern.ch/cvmrepo/yum. The integrity of the yum repository is verified by a GPG
key (http://cvmrepo.web.cern.ch/cvmrepo/yum/RPM-GPG-KEY-CernVM). There are as
well corresponding RPMs and source tarballs of CernVM-FS available at the HTTPS
location https://cernvm.cern.ch/project/trac/cernvm/downloads.

9

http://cvmrepo.web.cern.ch/cvmrepo/yum
http://cvmrepo.web.cern.ch/cvmrepo/yum
http://cvmrepo.web.cern.ch/cvmrepo/yum/RPM-GPG-KEY-CernVM
https://cernvm.cern.ch/project/trac/cernvm/downloads

	Introduction
	Security Objectives
	Data Integrity and Authenticity
	Implementation Notes
	Customization
	Distribution

