
CSC 2012 – Virtualization Exercises

Part II

Note: These exercises are available online under
http://cvmrepo.web.cern.ch/cvmrepo/csc12/cernvm-exercises.pdf

Today’s Synopsis

• Run a distributed analysis job using a single master node and multiple
worker nodes

• Split a workload into small pieces by specifying data dependencies

• Problems of scaling parallel applications in the master-worker style

Exercise 3 – Monte Carlo π

In this exercise, we will use a Monte Carlo method (i. e. we roll dices) in
order to compute an approximation of π. In order to do so, we randomly
shoot points into a square with side length 2 that encloses a circle with radius
r = 1 (Figure 1).

This computation can be very well parallelized. You’ll find a program
that shoots randomly in the square and keeps track of the number of hits
inside the circle (mcpi-worker). You’ll also find a program that takes the

×
×

×
×

××

×

×

×

×

×

×

Figure 1: Random points shot inside and outside the unit circle.

1



overall number of shots and the number of hits inside the circle to compute
π (mcpi-merge).

The mcpi-worker instances can run independently on many of your
virtual machines in parallel. Their result is sent back to an instance of
mcpi-merge for final calculation. We will use a system called Makeflow that
automatically steers the workflow and distributes the computation jobs to
all available virtual machines. In order to make Makeflow work, you have to
create a dependency file that consists of rules in the following form:
<output file>: <input files and processing program>

o <command line to produce output file>

Every rule can potentially run on another virtual machine. A rule will only
be executed if all its dependencies are present, either as initial input or as a
result from the execution of other rules. You can see how it looks like for
this particular problem in the file mcpi.makeflow. The workflow is started by
makeflow -T wq -a -C 130.238.25.21:9097 -N <CSC-GROUP> mcpi.makeflow.
Don’t worry about the extra options; they are required to distribute the
work on the infrastructure of these exercises.

In fact, a Makeflow file looks rather similar to an ordinay Makefile. One of
the differences is that you have to additionally specify the program required
for processing as a dependency. The prefix “LOCAL” tells makeflow to
execute this specific rule on the invoking machine, and not on one of your
workers.

1. You know already how to boot a Desktop CernVM as well as a zoo of
batch CernVMs. Now we need it. Boot your Desktop CernVM and
the CernVM zoo of 2 batch nodes and check that all the machines are
up and running.

2. Log into your Desktop CernVM. Download and unpack the exercises
by

wget http://cvmrepo.web.cern.ch/cvmrepo/csc12/cernvm.tar.gz

tar xvfz cernvm.tar.gz

Go to the directory cernvm/03mcpi and run make to compile the sample
programs.

3. Run the distributed makeflow from a terminal in your Desktop CernVM
with

makeflow -T wq -a -C 130.238.25.21:9097 -N <CSC-GROUP> \

mcpi.makeflow

The result of your calculation is in the file PI.

2



4. Ooops. Someone forgot to insert the formula to get π from the Monte
Carlo results.
Can you help and fix mcpi-merge.cc? Hint: The area of a cir-
cle is πr2. You can cleanup the makeflow results with makeflow -c

mcpi.makeflow.

5. Use the Makeflow file to calculate π up to the first 5 digits (π =
3.1415 · · · ). Play with the number of trials (shots) to improve the
precision.
How many trials did you eventually use?
Bonus task: Can you figure out analytically how many trials you
would need so that the error of your computation is with a probability
of 95 % not more than 10−5?

Exercise 4 – Who’s a Hub?

This exercise will use Makeflow to analyze graphs (more on graphs in the
appendix). A common analysis on graphs is to find out which of the vertices
are important (for a suitable definition of “important”). Such a function
f : V → R that rates the vertices of a graph is called a centrality. In the
following, we will deal with the betweenness centrality. Let σ(s, t) be the
number of shortest paths between the vertices s and t and σv(s, t) the number
of shortest paths between the vertices s and t via v. Betweenness is then
defined as

Betweenness(v) =
∑
s,t∈V

s 6=t6=v 6=s

σv(s, t)

σ(s, t)

That means: a vertex v that is on many shortest s-t-paths is rated high.
Such vertices are usually hubs or router vertices such as motorway junctions.
See Figure 2 for an example.

The computation of betweenness is nicely parallelizable. To do so, we
compute independently for every vertex v the betweenness dependency δv(w)

v0

v1

v2

v3

Figure 2: Betweenness example. Vertex v1 is a middle node on the shortest
path v0 − v1 − v3, but not on the shortest path v0 − v2 − v3. Hence its
betweenness is 1/2.

3



of v to all other vertices w. For the moment, we do not care how exactly
these dependencies are computed. We just note the relationship between
dependency values and betweenness, which is:

Betweenness(w) =
∑
v∈V

δv(w).

1. Go to the directory cernvm/04hubs and run make to compile the sample
programs. Have a look at the programs betweenness, dependency,
and dsum. They can be used to compute the betweenness of graphs,
either in one go (betweenness), or by computing the dependencies
of small chunks of vertices (dependency) and then summing up the
partial results (dsum). Compute the betweenness of the toy graphs
star.graph, grid.graph, and complete.graph.
What do you get?

2. The routes.graph file represents 3219 major airports and the airline
routes between them1 (Figure 3). Write a Makeflow file to distribute
the computation using the dependency and the dsum programs.
According to this analysis, which are the 3 most important airports?
Hints: The exact number of vertices has been mentioned because it
is required to parallelize the work. If you have problems with your
Makeflow file, try using the Makeflow option -d all for more detailed
output. You might want to use the UNIX utility sort -n -k2,2 on
the final result. You’ll find a table that maps the airport vertex number
to an airport name in the file airport.dat. The UNIX grep utility
might become handy.

3. Measure the speed-up you get using all virtual machines (Makeflow)
compared to just 1 virtual machine. In order to run the computation
only on a single machine, you can either use the betweenness program
or use makeflow without the extra options, which will run it locally.
Hint: the UNIX time utility can be helpful to measure running times.

4. Suppose you wouldn’t know beforehand how many virtual machines
you have.
Would that change the way your Makeflow file look?
Would that change the way you created the file?
Can you think of a potential new problem that might arise?

Bonus exercise. Calculate the betweenness of the graph smallworld.graph (the graph
has 4096 vertices). So-called small-world graphs are characterized by
only few edges per vertex on average and very short connections from ev-
ery vertex to every other vertex. They were built after the phenomenon

1See http://openflights.org/data.html

4



Figure 3: Major airports and airline routes between them. Data and
visualization comes from OpenFlights.org. With the naked eye, it’s dif-
ficult to retrieve information from larger graphs.

that every person on earth knows every other person via only few
intermediate hops. You’ll find a ROOT macro plot-betweenness.C

that you can use to plot the betweenness distribution of your result.
You might have to change the name of the input file in the macro.
Setup ROOT by

source setup_root.sh

Run the macro by root -l plot-betweenness.C

Can you infer from the distribution anything about hubs?
Do you have an assumption which distribution this is?
Which impact does it have on the reliability of small-world networks?

A Brief Recap on Graphs

A graph consists of a set of vertices that are connected by edges. Figure 4
shows some graphs. Many relationships can be modeled as graphs, for
example the hosts on the Internet and their network connections, the street
network, or the #include dependencies of a C++ source file.

There are many different incarnations of graphs, directed and undirected,
weighted and unweighted, simple graphs and multigraphs, finite and infinite
graphs. In this exercise, we deal with finite, simple, undirected, unweighted

5



•
Viviane

•
Joanne

•
Marissa

•
Larry

•
Tom

•
Martin

Figure 4: A few graphs. Left side: a star (6 vertices, 5 edges). Middle:
a complete graph (4 vertices, 6 edges). Right side: a bipartite graph that
models who wants to marry whom (can you help them make a match?)

graphs. In this form, a graph G = (V,E) is a tuple consisting of a finite
set of vertices V and a finite set of edges E ⊆ {{v, w} | v, w ∈ V, v 6= w}.
For simplicity, we denote the vertices with numbers 0, . . . , n − 1. A path
from vertex v0 to vertex vk is a sequence (v0, . . . , vk) of vertices in which
successive vertices have to be connected by an edge. In this exercise, we
only deal with paths without loops, i. e. the vertices of the path have to be
pairwise distinct.

Further Reading

• Albrecht, Donnelly, Bui and Thain, Makeflow: A Portable Abstrac-
tion for Data Intensive Computing on Clusters, Clouds, and Grids,
SWEET’12, 2012

• Buncic et al., A practical approach to virtualiztion in HEP, The Euro-
pean Physical Journal Plus 126:1, 2011

• Brandes, A Faster Algorithm for Betweeness Centrality, Journal of
Mathematical Sociology 25:2 pp. 163-177, 2001

• Koschutzki et al., Centrality Indizes, in “Network Analysis”, LCNS
3418 pp. 16-104, Springer, 2005

• Stanford Network Analysis Platform, http://snap.stanford.edu

6


