
Portable Analysis Environment using Virtualization Technology (WP9)

The CernVM File System

Jakob Blomer Predrag Buncic

Revision 2.0-6

Technical Report
June 2012

Abstract

The CernVM File System is a client-server file system developed to deliver software
stacks onto virtual machines in a fast, scalable, and reliable way. CernVM-FS is
implemented as a FUSE module. It makes a specially prepared directory tree stored on
a web server look like a local read-only file system on the virtual machine. CernVM-FS
uses outgoing HTTP connections only, thereby it avoids most of the firewall issues
of other network file systems. It transfers data file by file on demand, verifying the
content by SHA-1 keys.

By means of aggressive caching and reduction of latency, we focus specifically for the
software use case. Volumes hosting software consist usually of many small files that
are frequently opened and read as a whole. Furthermore, we see frequent looking for
files in multiple directories when search paths are examined.

We currently use CernVM-FS as part of the CernVM project. ATLAS and LHCb
experiments use it to distribute software and conditions data to Grid sites. We host and
distribute several hundred gigabytes of software, amongst others experiment software
for ATLAS, CMS, LHCb, NA61 as well as software for the LCD collaboration.

Contents

1. Overview 1

2. Getting Started 4
2.1. Setting up yum for CernVM-FS . 4
2.2. Installation . 4
2.3. Usage . 6
2.4. Debugging Hints . 6

3. Installation from Sources 7
3.1. Installation of the CernVM-FS Fuse Module 7
3.2. Configuration of CernVM-FS . 7

3.2.1. Using Multiple Replicas . 7
3.3. Manually Mounting the CernVM-FS Fuse Module 10
3.4. Debugging . 11

4. Setting up a Local Squid Proxy 14

5. Creating a Repository 15
5.1. CernVM-FS Respository Out of the Box 17

6. Under the Hood 18
6.1. File Catalog . 18

6.1.1. Nested Catalogs . 18
6.1.2. 𝜇-Catalogs . 20
6.1.3. Catalog Signature . 20

6.2. Exploited HTTP Features . 21
6.2.1. Forward Proxies . 21
6.2.2. Timeouts . 23
6.2.3. Keep-Alive . 23
6.2.4. Cache Control . 24
6.2.5. Identification Header . 24

6.3. Disk Cache . 24
6.3.1. Managed Disk Cache . 25

6.4. File System Traces . 26
6.5. System Interface . 26

6.5.1. mount / re-mount . 26
6.5.2. stat . 27
6.5.3. readlink . 27

ii

6.5.4. readdir . 27
6.5.5. open / read . 27
6.5.6. getxattr . 28
6.5.7. Dynamic Configuration . 29

6.6. Repository Synchronization . 30

A. Available RPMs 33

Bibliography 34

1. Overview

The CernVM File System (CernVM-FS) is a client-server file system developed
to deliver software distributions onto virtual machines in a fast, scalable, and reliable
way. The delivered software is intended to reside in the form of binaries on a repository
server, i. e. the repository server reflects usually the result of a make install.

CernVM-FS is implemented as File System in User Space (FUSE) [HS] module.
Figure 1.1 shows general idea of distributing software with CernVM and CernVM-FS.
Figure 1.3 shows how CernVM-FS interlocks with Fuse and a web server in order
to deliver files. It has been designed to make a directory tree stored on a web server
look like a local read-only file system on the virtual machine. On the client side it
requires only outgoing HTTP connectivity to a web server and/or an HTTP proxy
server. Assuming that the files are read only, CernVM-FS does aggressive file level
caching. Both files and file metadata are cached on the local disk as well as on proxy
servers, allowing the file system to scale to a very large number of clients.

The first implementation of CernVM-FS was based on grow-fs [?,CGL+10], which
was originally provided as one of the private file system options available in Parrot.
Parrot traps the system I/O calls and that is resulting in a performance penalty and
occasional compatibility problems with some applications. The principal new features
in CernVM-FS compared to grow-fs are:

∙ Using FUSE kernel module allows for in-kernel caching of file data and file
attributes.

∙ Use of content addressable storage format resulting in immutable files and auto-
matic file de-duplication

∙ Capability to work in offline mode providing that all required files are cached.

∙ Possibility to split a directory hierarchy into sub catalogues.

∙ Transparent file compression/decompression.

∙ Dynamical expansion of environment variables embedded in symbolic links.

∙ Capability to cope with digitally signed (X.509) file catalogs.

∙ Automatic updates of file catalogs controlled by a time to live stored inside file
catalogs

∙ Automatic selection of mirror servers based on network round trip time.

∙ Random selection from a set of forward proxy servers, which results in automatic
load-balancing of proxy servers

1

1. Overview

rAA

H
T

T
P

(S
)

X
M

L
-R

P
C

Minimal
Linux OS

CernVM-FS

Linux Kernel

Contextualization

XMPP
HTTP (Amazon EC2)

Fuse

ssh

Hierarchy of
HTTP Caches

250MB
Bootstrap Image

1 GB
CernVM-FS Cache

10GB
Single Release

(all releases available)

Figure 1.1.: Building blocks of CernVM 2. CernVM is built around a minimal SL5.
Experiment software is loaded file by file on demand and is locally cached.

Local Installation CernVM-FS
Network FS SaaS

more effort, more control

local execution remote execution

Figure 1.2.: Classification of CernVM-FS and several alternative options for software
installation.

Architectural-wise, CernVM-FS is comparable to a network file system (Figure 1.2).
Though the task of installing software is done remotely on the repository side, software
is still executed locally under control of the user. This is in contrast to software as a
service where control is completely handed over to a third party. In contrast to general
purpose network file systems such as nfs, CernVM-FS is particularly crafted for fast
and scalable software distribution. For instance, running and compiling software might
easily overload nfs or Lustre [Sch03] shared software areas.

2

1. Overview

open(/ChangeLog)

glibc

VFS
inode cache
dentry cache

Buffer cache ext3

NFS

...

Fuse

libfuse

CernVM-FS

user space

kernel space
syscall /dev/fuse

SHA1

file descr.fd
HTTP GET

inflate+verify

Figure 1.3.: Process of opening a file. CernVM-FS resolves the name by means of an
SQLite catalog, which is prepended by a memory cache. Downloaded files
are verified against the cryptographic hash of the corresponding catalog
entry. The read() and the stat() system call can be entirely served from
the in-kernel file system buffers.

3

2. Getting Started

This section describes how to install CernVM-FS on Scientific Linux 5/6 for use
with CernVM repositories. For a list of currently hosted repositories at cern see
Table 2.1. CernVM-FS comes as a source tarball and as an rpm for Scientific
Linux on x86 and x86_64 architectures. Current versions are available from https:
//cernvm.cern.ch/portal/downloads.

2.1. Setting up yum for CernVM-FS
If you want to use yum, there is a repository available at http://cvmrepo.web.cern.
ch/cvmrepo/yum. The cvmfs-release package can be used to add the CernVM-FS
repository to your local yum. Use the following script to download and install the
cvmfs-release RPM:

RELEASE=$(rpm -q --queryformat ’%{version}\n’ sl-release)
RELEASE_MAJOR=$(echo $RELEASE | cut -d. -f1)
ARCH=$(uname -m)
wget http://cvmrepo.web.cern.ch/cvmrepo/yum/cvmfs/EL/$RELEASE/$ARCH/\
cvmfs-release-2-2.el${RELEASE_MAJOR}.noarch.rpm
sudo rpm -i cvmfs-release-2-2.el${RELEASE_MAJOR}.noarch.rpm

For Ubuntu and SuSE, compile from sources using the following configure options:

--enable-sqlite3-builtin --enable-libcurl-builtin \
--enable-libfuse-builtin --enable-libfuse-builtin \
--enable-zlib-builtin --enable-mount-scripts --disable-server \
--prefix=/usr

2.2. Installation
To install, proceed according to the following steps:

Step 1 Install the CernVM-FS packages. With yum, run

1 yum i n s t a l l cvmfs−keys cvmfs cvmfs−i n i t −s c r i p t s .

If yum does not show the latest packages, clean the yum cache by yum clean all.
Use rpm −vi to install the packages using just rpm.

4

https://cernvm.cern.ch/portal/downloads
https://cernvm.cern.ch/portal/downloads
http://cvmrepo.web.cern.ch/cvmrepo/yum
http://cvmrepo.web.cern.ch/cvmrepo/yum

2. Getting Started

Repository Description
atlas.cern.ch ATLAS experiment software
atlas-condb.cern.ch ATLAS conditions database
atlas-nightlies.cern.ch ATLAS nightly builds
cms.cern.ch CMS experiment software
lhcb.cern.ch LHCb experiment software
lhcb-conddb.cern.ch LHCb conditions database
na61.cern.ch NA61 experiment software
hone.cern.ch H1 experiment software
boss.cern.ch BES experiment software
lcd.cern.ch Software of the Linear Collider Studies collaboration
grid.cern.ch Grid User Interface
sft.cern.ch LCG application’s area software
geant4.cern.ch Geant4 software

Table 2.1.: Repositories hosted at cern

Step 2 For the base setup, run cvmfs_config setup. Alternatively, you can do the base
setup by hand: ensure that user_allow_other is set in /etc/fuse.conf and ensure
that /cvmfs /etc/auto.cvmfs is set in /etc/auto.master. If you migrate from a
previous version of CernVM-FS, see the release notes if there is anything special
to do for migration.

Step 3 Create /etc/cvmfs/default.local and open the file for editing.

Step 4 Select the desired repositories by setting CVMFS_REPOSITORIES=repo1,repo2,....
For ATLAS, for instance, set

CVMFS_REPOSITORIES=a t l a s . cern . ch , a t l a s−condb . cern . ch , g r id . cern . ch

Specify the HTTP proxy servers on your site with

1 CVMFS_HTTP_PROXY="http :// myproxy1 : port | http :// myproxy2 : port "

For the syntax of more complex HTTP proxy settings, see Section 6.2.1. Make
sure your local Squid servers allow access to all the Stratum 1 web servers 4.
For Cern repositories, the Stratum 1 web servers are listed in /etc/cvmfs/do-
main.d/cern.ch.conf.

Step 5 Restart the cvmfs service by service cvmfs restart.

Step 6 Check if CernVM-FS mounts the specified repositories by service cvmfs probe.

5

2. Getting Started

2.3. Usage
The CernVM-FS repositories are located under /cvmfs. Each repository is identified
by a fully qualified repository name. That is a repository identifier and a domain
name, similar to DNS [Moc87]. The domain part of the fully qualified repository
name indicates the location of repository creation and maintenance. For the ATLAS
experiment software, for instance, the fully qualified repository name is atlas.cern.ch.

Mounting and un-mounting of the CernVM-FS is controlled by autofs and
automount. That is, starting from the base directory /cvmfs different repositories are
mounted automatically just by accessing them. For instance, running the command
ls /cvmfs/atlas.cern.ch will mount the ATLAS software repository. This directory gets
automatically unmounted after some automount-defined idle time.

Usually, some additional configuration is necessary to make the software of a cer-
tain repository run properly. This includes symbolic links from /opt/repository to
/cvmfs/repository.cern.ch. The extra configuration is done by the cvmfs service.

2.4. Debugging Hints
In order to check for common misconfigurations in the base setup, run

cvmfs_config chksetup

CernVM-FS gathers its configuration parameter from different configration files
(default, domain specific, local setup, . . .). To show the effective configuration for
repository.cern.ch, run

1 cvmfs_config showconf ig r e po s i t o r y . cern . ch

In order to exclude autofs/automounter as a source of problems, you can try to
mount repository.cern.ch manually by

1 mkdir /mnt/cvmfs
mount −t cvmfs r e po s i t o r y . cern . ch /mnt/cvmfs

Once you sorted out a problem, make sure that you do not get the original error
served from the file system buffers by

s e r v i c e cvmfs r e s t a r t a u t o f s

In case you need additional help, please don’t hesitate to contact us at cernvm.
support@cern.ch. Together with the problem description, please send the system
information tarball created by cvmfs_config bugreport.

6

cernvm.support@cern.ch
cernvm.support@cern.ch

3. Installation from Sources

This section describes how to manually install the CernVM-FS client from the
source tarball. Current versions are available from https://cernvm.cern.ch/portal/
downloads. In order to compile CernVM-FS from the tarball, you need a Linux
system having installed the packets listed in Table 3.1.

3.1. Installation of the CernVM-FS Fuse Module
Download and uncompress the source tarball. The CernVM-FS build system is
created with automake. So compilation is done by the usual configure, make, make
install procedure. We recommend to configure using

1 . / c on f i gu r e −−p r e f i x=/usr −−d i sab l e−s e r v e r \
−−enable−s q l i t e 3 −builtin −−enable−l i b c u r l −builtin \

3 −−enable−z l i b−builtin −−enable−mount−s c r i p t s

The package installs the cvmfs2, cvmfs2_debug, cvmfs_fsck, cvmfs_config, and
cvmfs-talk executables. In addition, it installs configuration files to /etc/cvmfs as
well as the mount helpers mount.cvmfs and umount.cvmfs to /sbin and the autofs
map auto.cvmfs to /etc.

3.2. Configuration of CernVM-FS
In the default configuration, you do not have to mount or un-mount CernVM-
FS repositories manually; this is done by automount. Starting from the base
directory /cvmfs the repositories are mounted on first access (ref. Section 2). The local
configuration of CernVM-FS is controlled by a couple of files in /etc/cvmfs listed in
Table 3.2. For every .conf file except for site.conf you can create a .local file having
the same prefix in order to customize the configuration. The .local file will be sourced
after the corresponding .conf file.

The variables you can set in /etc/cvmfs/default.local roughly correspond to mount
options of the Fuse module. See Section 3.3 for a comprehensive list of mount options.
Table 3.3 lists the known configuration parameters. To make changes to the parameters
effective, the cvmfs service has to be restarted by service cvmfs restart.

3.2.1. Using Multiple Replicas
For reliability, multiple replica or mirror servers can be used by CernVM-FS. To do so,
set CVMFS_SERVER_URL to a semicolon-separated list of known replica servers (enclose

7

https://cernvm.cern.ch/portal/downloads
https://cernvm.cern.ch/portal/downloads

3. Installation from Sources

Package Client Server Compile
kernel built tree X
Fuse kernel module X X
fusermount utility X
autofs X
openssl ≥ 0.9.7a X X X
libz ≥ 1.23 (X) (X) (X)
libcurl ≥ 7.15 (X) (X)
sqlite3 ≥ 3.3.9 (X) (X) (X)
libgomp ≥ 4.4.0 X X
gcc, g++ ≥ 4.1 X
autotools X
pkg-config X

Table 3.1.: System requirements for CernVM-FS. Packages with checkmarks in paran-
theses are shipped with CernVM-FS and can be compiled and linked
statically.

File Purpose
config.sh Set of helper functions for the events mount, un-

mount, and initialization of a repository
default.conf Set of parameters reflecting the standard configu-

ration
site.conf Site specific set of parameters that overwrites the

standard configuration. Do not touch. This file is
used by the CernVM web interface.

domain.d/$domain.conf Domain-specific parameters and implementations
of the functions in config.sh

config.d/$repository.conf Repository-specific parameters and implementa-
tions of the functions in config.sh

keys/$domain.pub Public keys used to verify the digital signature of
file catalogs

Table 3.2.: List of configuration files for CernVM-FS in /etc/cvmfs

8

3. Installation from Sources

Parameter Meaning
CVMFS_REPOSITORIES Comma-separated list of fully qualified repository names

that shall be mountable under /cvmfs.
CVMFS_HTTP_PROXY Sets the proxies mount option. CernVM-FS supports

random selection of a listed proxy server in order to
balance their load load. See Section 6.2.1 on how to use
lists of proxy servers. This parameter is required.

CVMFS_TIMEOUT Timout in seconds for HTTP requests with a proxy server.
CVMFS_TIMEOUT_DIRECT Timout in seconds for HTTP requests without a proxy

server.
CVMFS_NFILES Sets the nofiles mount option.
CVMFS_CACHE_BASE Sets the parent directory of the cachedir mount option.

The $CVMFS_USER has to be owner of this directory.
CVMFS_SERVER_URL Sets the repository url having @org@ as placeholder for

the repository. Usually set for a domain. Example:
http://cernvm-webfs.cern.ch/opt/@org@

CVMFS_PUBLIC_KEY Sets pubkey mount option. Usually set for a domain.
CVMFS_STRICT_MOUNT If set to yes, only repositories listed in

CVMFS_REPOSITORIES can be mounted.
CVMFS_FORCE_SIGNING If set to yes, only digitally signed repositories can be

mounted.
CVMFS_SYSLOG_LEVEL Sets the syslog_level mount option.
CVMFS_TRACEFILE Sets the tracefile mount option.
CVMFS_DEBUGLOG Specifies a debug log file. Having this variable set,

CernVM-FS runs in debug mode which causes high
load. The debug log is different from normal log mes-
sages written to syslog.

CVMFS_MAX_TTL Sets the max_ttl mount option.
CVMFS_USER Sets the gid and uid mount options. Don’t touch or

overwrite.
CVMFS_OPTIONS Set of standard Fuse options that are added. Don’t touch

or overwrite.
CVMFS_MOUNT_DIR Sets the CernVM-FSroot directory. Don’t touch or

overwrite.

Table 3.3.: List of recognized parameters in /etc/cvmfs/default.local. For
CernVM-FS mount options see Section 3.3.

9

http://cernvm-webfs.cern.ch/opt/@org@

3. Installation from Sources

in double quotes). The so defined URLs are organized as a ring buffer. Whenever
download of files fails from a server, CernVM-FS automatically switches to the next
mirror server. Additionally, on the first download and after every 1000 downloads,
CernVM-FS orders the list of servers according to the round trip time for downloading
a file; it then switches automatically to the closest server.

3.3. Manually Mounting the CernVM-FS Fuse
Module

In order to mount a remote HTTP repository manually onto a local mount point, use
the following basic syntax

mount −t cvmfs [−o $mount_options] $ r epo s i t o r y $mount_point

The mount command will invoke the CernVM-FS mount helper /sbin/mount.cvmfs,
which in turn will invoke the cvmfs2 binary. The $mount_point is a path to an empty
directory as with any other mount. The CernVM-FS mount helper takes care of
transforming the $repository pseudo device into an HTTP URL, according to the
CVMFS_SERVER_URL parameter. Additionally it specifies a set of default mount options
listed in Table 3.4. The -f option to the mount command does a dry run, i. e. it shows
the command line that is used to invoke the cvmfs2 process; this might be useful for
debug purposes.

CernVM-FS has to be started as root; it will drop privileges to $CVMFS_USER. Useful
mount options are

10

3. Installation from Sources

−o rebuild_cachedb The managed cache database is rebuilt from the
cache directory. This might become necessary when
CernVM-FS was mounted once with quota_limit
and once without.

−o deep_mount Path prefix if a repository is mounted on a nested
catalog, i.e. −o deep_mount=/software/15.0.1.

−o force_signing CernVM-FS will accept only signed catalogs. This
might create hard to find I/O errors, if a root cat-
alog is signed but one of its nested catalogs is not.
Failures due to invalid signatures are written into
syslog.

−o whitelist=<url> HTTP location of a signed white-list contain-
ing certificate fingerprints. Only file catalogs
from certificates referenced in this white-list are
accepted as validly signed. Defaults to <root
url>/.cvmfswhitelist.

−o pubkey=<pemfile> Public RSA key that is used to verify the the white-
list signature.

−o syslog_level=<NUMBER> Sets the level used for syslog to DEBUG (1), INFO
(2), or NOTICE (3). Default is NOTICE. Note
that the level applies only to messages written into
syslog, not to the debug log. The debug log is a
separate log facility that is turned on and off by the
CVMFS_DEBUGLOG parameter.

See cvmfs2 −−help for a complete list of available mount options.

3.4. Debugging
The cvmfs2 binary forks a watchdog process on start. Using this watchdog, CernVM-
FS is able to create a stack trace in case certain signals (such as segmentation fault)
are received. The watchdog writes the stack trace into syslog as well as into a file
stacktrace in the cache directory. The cvmfs-talk utility can be used to determine
the PID of the main process (see Section 6.5.7).

In addition to the cvmfs2 binary, CernVM-FS comes with a cvmfs2_debug binary
that is compiled with debug symbols and without optimization. In case there are any
problems with CernVM-FS, this binary can create a detailed log file. Also, it is
compiled without optimizations for better examination by gdb. In order to create a
log file, use the cvmfs2_debug and mount with the additional mount options

−o debug , l o g f i l e=$absolute_path

You will get the standard mount options by

1 mount −f −t cvmfs $ r epo s i t o r y $mount_point

11

3. Installation from Sources

−o fsname=cvmfs2 The mount command will show cvmfs2 instead of fuse. This
is for convenience.

−o ro Marks the file system as read-only.
−o nodev Marks the file system as unrelated to any system device.
−o grab_mountpoint Changes the owner of the mount point to $CVMFS_USER.
−o kernel_cache Uses Linux file system buffers to cache file data. This option

brings probably the biggest performance boost. Used in
conjunction with auto_cache.

−o auto_cache Invalidate changed files in the Linux file system buffers. Used
in conjunction with kernel_cache.

−o allow_other Allows other users than the mounting user to access the file
system.

−o entry_timeout Specifies the maximum caching duration for file meta data in
the kernel in seconds. 10 seconds is a reasonable value.−o negative_timeout

−o attr_timeout
−o max_ttl Specifies a maximum time to live for file catalogs in minutes.

That way, the repsonse time to updates can be improved
(default is 1 hour). Note that a shorter TTL will also stress
the local Squids more.

−o quota_limit If quota_limit is specified, CernVM-FS turns the local
cache into a managed LRU cache. When the cache grows
beyond the amount of MB specified by quota_limit,
CernVM-FS removes files from the cache according to LRU
until the size is below quota_threshold. As a side effect, this
restricts the maximum file size to
quota_limit-quota_threshold. In case only quota_limit=−1 is
specified, the cache size is unrestricted.

−o quota_threshold

−o nofiles Sets the maximum number of open files for CernVM-FS
process (soft limit) to $CVMFS_NFILES. Set this at least to
10 000.

−o cachedir Sets the cache directory for the file and catalog cache. The
cache directory will be created on demand; it has to be owned
by $CVMFS_USER.

−o proxies Specifies the semicolon-separated list of forward proxy servers
to $CVMFS_PROXY.

−o uid Sets the user id and group id of $CVMFS_USER−o gid

Table 3.4.: Mount options as added by /etc/auto.cvmfs with the default options
defined in /etc/cvmfs/default.conf

12

3. Installation from Sources

Alternatively, the mount helper will do the same having the CVMFS_DEBUGLOG variable
set to a file name.

CernVM-FS assumes that the local cache directory is trustworthy. However, it
might happen that files get corrupted in the cache directory caused by errors outside
the scope of CernVM-FS. CernVM-FS stores files in the local disk cache with
their cryptographic content hash key as name, which makes it fairly easy to verify file
integrity. CernVM-FS contains the cvmfs_fsck utility to do so for a specific cache
directory. Its return value is comparable to the system’s fsck. For example,

1 cvmfs_fsck −j 8 /var / cache /cvmfs2/ a t l a s . cern . ch

checks all the data files and catalogs in /var/cache/cvmfs2/atlas.cern.ch using 8
concurrent threads. Supported options are:

−j #threads Sets the number of concurrent threads that check files in the cache
directory. Defaults to 4.

−p Tries to automatically fix problems.
−f Unlinks the managed cache database (cf. Section 6.3.1), i. e. it will be

rebuilt by CernVM-FS on next mount.

13

4. Setting up a Local Squid Proxy

If you setup CernVM-FS on your local cluster, we strongly recommend to setup a
Squid forward proxy server as well. This is for two reasons: it will reduce the latency
for the local worker nodes, which is critical for cold cache performance. And it reduces
the load on our backend server.

From what we have seen, a Squid server on commodity hardware scales well for at
least a couple of hundred worker nodes. The more RAM and hard disk you can devote
for caching the better. We have good experience with 4-8GB of memory cache and
50-100 GB of hard disk cache. We suggest to setup two identical Squids for reliability
and load-balancing. Assuming the two servers are A and B, adjust your CernVM-FS
client configuration as follows:

CVMFS_HTTP_PROXY="http ://A: 3 1 28 | http ://B:3128 "

Squid is very powerful and has lots of configuration and tuning options. For CernVM-
FS we require only the very basic static content caching. Starting from a standard
Scientific Linux 5 Squid, all we have to do is to adjust the cache size. If you’re
using ACLs, add ACLs allow rules for the Stratum 1 servers1. Browse through your
/etc/squid/squid.conf and make sure the following lines appear accordingly

1 co l lapsed_forward ing on
max_fi ledesc 8192

3 maximum_object_size 4096 MB

5 # 4 GB memory cache
cache_mem 4096 MB

7 maximum_object_size_in_memory 32 KB
50 GB d i s k cache

9 cache_dir u f s /var / spoo l / squid 50000 16 256

Check your Squid configuration with squid -k parse. Create the hard disk cache
area with squid -z. In order to make the increased number of file descriptors effective
for Squid, execute ulimit -n 8192 prior to starting the Squid service.

1For Cern repositories Stratum 1 servers are http://cvmfs-stratum-one.cern.ch:8000 (CERN),
http://cernvmfs.gridpp.rl.ac.uk:8000 (RAL), and http://cvmfs.racf.bnl.gov:8000 (BNL).

14

http://cvmfs-stratum-one.cern.ch:8000
http://cernvmfs.gridpp.rl.ac.uk:8000
http://cvmfs.racf.bnl.gov:8000

5. Creating a Repository

Though in principle a CernVM-FS repository is just a directory tree, it is converted
into a repository format first. The repository format is in particular content addressable
storage. We call the original directory tree shadow tree. This task includes creating
the file catalog(s), compressing the files and calculating content hashes. Furthermore,
we store the files in the same layout as the local CernVM-FS cache on the server, i. e.
as SHA1 data chunks. We do so to exploit redundancy and in order to mangle the
real file name into an SHA1 key when CernVM-FS downloads files. This circumvents
certain firewall restrictions. For instance, many firewalls block an HTTP request to a
file called root.exe. Figure 5.1 outlines the repository generation.

Since the repositories may contain many file system objects1, we cannot afford to
process an entire shadow tree from scratch for every update. Instead, we choose a
journal based approach supported by the redirfs kernel level framework [Hrb05]. The
redirfs framework hooks into VFS2 calls and allows to install so-called filters. By
installing a CernVM-FS filter for redirfs, we create a journal of file system changes
which is processed by cvmfs_sync. “Process the journal” means that the shadow tree
is synchronized with the repository. This includes compression of new and updated
files and updating of the file catalogs.

In order to create a repository, the server part of CernVM-FS and the CernVM-
FS kernel modules are required. The server part and the kernel modules are avail-
able as rpms (see Section A). The server tools contain the cvmfs_sync and the
cvmfs_zpipe, cvmfs_sign, cvmfs_pull, cvmfs_scrum, and cvmfs_clgcmp tools as
well as the redirfs and cvmfsflt kernel modules. Create the directory structure
shown in Table 5.1. The directory and file names are mostly recommandations and fit
to the example command line to start the CernVM-FS server daemon, which is part
of the CernVM-FS add-ons directory.

From the point of view of the file system, repositories are relocatable. However,
many software installation tools hard-code the full path. In effect, repositories have to
be mounted at the same location that was used to install it on the release manager
machine. By convention, CernVM-FS repositories are mounted using fully qualified
repository name under /cvmfs, for instance at /cvmfs/atlas.cern.ch.

Typically a repository publisher does the following steps in order to create or update
a repository:

1. Make the necessary changes to the shadow directory, i. e. add new directories,
patch certain binaries, . . .

1For ATLAS, for example, “many” means order of 107 file system objects (i. e. number of regular
files, symbolic links, and directories).

2Virtual File System Switch, an operating system abstraction layer for file systems.

15

5. Creating a Repository

Shadow Tree

Repository

/opt/atlas

software

15.6.9

ChangeLog
...

806fbb67373e9...

Data Store File Catalog

Compression, SHA1

Figure 5.1.: Converting a shadow tree into a repository. The file catalog contains the
directory structure as well as file metadata, symbolic links, and secure hash
keys of regular files. Regular files are compressed and renamed to their
cryptographic content hash before copied into the data store.

16

5. Creating a Repository

/shadow This is a standard directory which will be watched by inotify. This
directory will be seen by CernVM-FS clients as read-only directory.
Install your software in here.

/pub Conatins everything that needs to be served by the webserver.
/pub/catalogs Contains the cvmfs catalogs and symlinks to /pub/data. Mimics the

directory structure in /shadow as far as necessary to provide all the
entry points for catalogs. For Apache servers, it is recommended to
add a .htaccess file in this directory allowing symlinks to be followed.

/pub/data The SHA1 data cache, looks like the cache directory on clients except
that files reside in a compressed form.

/ctrl Contains zipped versions of old journals and may contain additional
control files for cvmfs_sync.

Table 5.1.: Recommended directory layout of a repository. These directories don’t have
to be in the root directory. The shadow, the ctrl, and the pub directory
don’t have to be in the same parent directory.

2. Test the software installation

3. Run the cvmfs_sync utility and optionally the cvmfs_sign utility.

4. Make the web server serve the new version of the pub directory.

5.1. CernVM-FS Respository Out of the Box
Small organizations can use the cvmfs_server script in order to easily create a new
CernVM-FS repository with reasonable defaults. Run without options for documen-
tation. The tool expects an SL5 distribution with an httpd service running and no
CernVM-FS client utilities. The server utilities and the client utilites are mutually
exclusive.

The cvmfs_server uses the /srv/cvmfs area as storage. So if you want to use a
large hard disk, mount it there upfront.

The necessary steps for a new repository are:

1. cvmfs_server mkfs ams.iss.xz

2. Install software in /cvmfs/ams.iss.xz as user cvmfs

3. cvmfs_server publish

4. Every 30 days: cvmfs_server resign

Note that the software signing key and the release manager machine certificate are
newly created as well. In particular, they are different from CERN repositories. In
order to mount the so-created repositories on CernVM-FS clients, push the public
signing key /etc/cvmfs/keys/ams.iss.xz.pub from the release manager machine to the
clients. A release manager machine can only manage one repository.

17

6. Under the Hood

CernVM-FS has a modular structure and relies on several open source libraries.
Figure 6.1 shows the internal building blocks of CernVM-FS. Most of those libraries
are shipped with the CernVM-FS tarball and can be linked statically to keep the
system dependencies minimal.

6.1. File Catalog
A CernVM-FS repository is defined by its file catalog. The file catalog is an SQLite
database [H+] having a single table that lists files and directories together with its
metadata. The table layout is shown in Table 6.1.

In order to save space we do not store absolute paths. Instead we store MD5 hash
values of the absolute path names. Symlinks are kept in the catalog. Symlinks may
contain environment variables that will be dynamically resolved by CernVM-FS on
access. The SHA1 content hash referrs to the zlib-compressed version of the file. Flags
indicate the type of an directory entry (see Table 6.1).

A file catalog contains a (TTL), stored in seconds. The catalog TTL advises clients
to check for a new version of the catalog, when expired. Checking for a new catalog
version takes place with the first file system operation on a CernVM-FS volume after
the TTL has expired. The default TTL is one hour. If a new catalog is available,
CernVM-FS delays it’s loading for the period of the CernVM-FS kernel cache life
time (default: 1 minute). During this drain-out period, the kernel caching is turned off.
The first file system operation on a CernVM-FS volume after that additional delay
will apply a new file catalog and kernel caching is turned back on.

6.1.1. Nested Catalogs
In order to keep catalog sizes reasonable1, repository subtrees may be cut and stored
as separate nested catalogs. There is no limit on the level of nesting. A reasonable
approach is to store separate software versions as separate nested catalogs. Figure 6.2
shows the directory structure which we use for the ATLAS repository.

When a subtree is moved into a nested catalog, its entry directory serves as transition
point for nested catalogs. This directory appears as empty directory in the parent
catalog with Flags set to 2. The same path appears as root-directory in the nested
catalog with Flags set to 33. Because the MD5 hash values refer to full absolute paths,
nested catalogs store the root path prefix. This prefix is prepended transparently

1As a rule of thumb, file catalogs up to 25MB (compressed) are reasonably small.

18

6. Under the Hood

Building Blocks

Components

User Interface

SHA1 MD5 zlib

SQLite libcurl libcrypto

Fuse redirfs

Catalog Cache Quota / LRU

Trace Capturing VFS Filter

CernVM-FS cvmfs_sync

Figure 6.1.: CernVM-FS block diagram.

Field Type
Path MD5 128 Bit Integer
Parent Path MD5 128 Bit Integer
inode Integer
SHA1 Content Hash 160 Bit Integer
Size Integer
Mode Integer
Last Modified Timestamp
Flags Integer
Name String
Symlink String

Flags Meaning
1 Directory
2 Transition point to a nested catalog
33 Root directory of a nested catalog
3 Regular file
4 Symbolic link

Table 6.1.: Metadata information stored per directory entry.

19

6. Under the Hood

root

panda

software

14.5.0
...

15.6.1

tier3

gcc
...

catalog entry points

Figure 6.2.: Directory structure useds for the ATLAS repository.

by CernVM-FS. The SHA-1 key of nested catalogs is stored in the parent catalog.
Therefore, the root catalog fully defines an entire repository.

Loading of nested catalogs happens on demand by CernVM-FS on the first attempt
to access of anything inside, i. e. a user won’t see the difference between a single large
catalog and several nested catalogs. While this usually avoids unnecessary catalogs to
be loaded, recursive operations like find can easily bypass this optimization. Nested
catalogs are also separate mount points. This allows for mounting CernVM-FS deep
into a repository, for instance one might mount a specific software release. Note that
in this case the deep_mount mount option has to be set accordingly.

6.1.2. 𝜇-Catalogs
The 𝜇-catalogs can be constructed in addition to the normal file catalogs. The 𝜇-
catalogs can be considered as a special case of nested catalogs, in which each directory
is a nested catalog. Essentially they are a precalculated ls -la for all directories.
They are implemented as SQlite catalogs as well having the same structure as normal
catalogs. The SHA-1 content hashes of the 𝜇-catalogs are stored in the hash field of
the directory entries in the catalog table.

6.1.3. Catalog Signature
In order to provide authoritative information about a repository publisher, file catalogs
may be signed by an X.509 certificate. It is important to note that it is sufficient to

20

6. Under the Hood

sign just the file catalog. Since every file is listed with its SHA1 content hash inside
the catalog, we gain a secure chain and may speak of a “signed repository”.

The signature is created using the cvmfs_sign utility. The cvmfs_sign utility takes
a X.509 certificate together with its private key in order to sign a catalog and its nested
catalogs. On the client side, CernVM-FS supports a trusted mode in which only
validly signed catalogs are mounted.

In order to validate file catalog signatures, CernVM-FS uses a white-list procedure.
The white-list contains the SHA1 fingerprints of known publisher certificates and a
timestamp. A white-list is valid for 30 days. It is signed by a private RSA key, which
we refer to as CernVM master key. The master key is kept offline on a secure smart
card at cern. So the security of the master key is ensured by 2-factor authentication
(possession of the smart card and knowledge of the pin). The smart card is used with a
smart card reader with pin pad. Neither the key nor the pin are ever exposed outside
the scope of those secure devices. The public RSA key that corresponds to the master
key is distributed with the CernVM-FS sources and the CernVM-FS rpm as well as
with every instance of CernVM.

In addition, CernVM-FS checks certificate fingerprints against a local blacklist
(default location is /etc/cvmfs/blacklist). The blacklisted fingerprints have to be in
the same format than the fingerprints on the white-list. The blacklist has precedence
over the white-list.

As crypto engine, CernVM-FS use libcrypto from the OpenSSL project [The].
Figure 6.3 shows the trust chain with a signed repository.

6.2. Exploited HTTP Features
The particular way of using the HTTP protocol has significant impact on the perfor-
mance and usability of CernVM-FS. The benefit from extended HTTP/1.1 features
like keep-alive, cache-control and pipelining [FGM+99] requires the intermediate proxy
servers and web servers to support them, too. In any way, CernVM-FS has to work
using just plain old HTTP/1.0 [BLFF96]. Internally, CernVM-FS uses the libcurl
library [Dan].

The HTTP behaviour affects a “cold cached” CernVM-FS system. As soon as all
necessary files are cached, there is only network traffic when a catalog TTL expires.
Usually we’ll see network traffic right after booting a CernVM for the first time, after
switching to another experiment environment, and after a new software version has
been published.

Downloading files is serialized by CernVM-FS. This avoids wasting the network
channel by parallel downloads of the same file.

6.2.1. Forward Proxies
CernVM-FS has a dedicated HTTP proxy configuration, independent from system-
wide settings. We encourage sites to setup a proxy that mirrors the CernVM-FS
repository, in order to decrease latency and increase reliability. Instead of a single proxy,

21

6. Under the Hood

release

manager

certificate white-list repository

CernVM-FS +
CernVM public key

fingerprint sign catalog

sign whitelist

1
download

signed catalog +
signed whitelist

2
verify whitelist +
check fingerprint

3
download

files

4
compare secure hash
against catalog entry

Figure 6.3.: Trust chain with a signed repository.

22

6. Under the Hood

CernVM-FS uses a chain of load-balanced proxy groups. If a proxy fails, CernVM-FS
automatically switches to the next group in the chain (automatic fail-over). The chain
is internally treated as ring buffer, i. e. after probing the last proxy in the chain, the
first proxy is probed again. To avoid endless loops, for each file download the number
of switches is restricted by the total number of proxies. Each of the proxy groups is
itself a list of proxy servers from which one of the servers is selected randomly. This
leads to a load-balancing of proxy servers. Within a load-balanced group, fail-over
takes place to another random server of that group until all proxy servers in the group
failed in a row.

The chain of proxy groups is specified by a string of semicolon separated entries,
each group is a list of pipe separated hostnames2. The DIRECT keyword for a hostname
avoids using proxies.

6.2.2. Timeouts
CernVM-FS does an effort to recover from broken network links. There is a config-
urable timeout for connection attempts and for very slow downloads (mount option
−o timeout), which is 10 seconds by default. A download is considered to be “very slow”
if the transfer rate is below 100 Bytes/second for more than the timeout interval. A
very slow download is treated like a broken connection. However, stalled DNS requests
may still make the CernVM-FS process look hanging. Therefore, we recommend a
local DNS caching server, such as a BIND caching server or nscd.

On timeout, CernVM-FS switches to the next proxy server and/or host if defined.
Otherwise it returns with an EIO error to the application. CernVM-FS distinguishes
between a proxied connection and a direct connetion and allows different timouts for
the two cases.

CernVM-FS uses exponential backoff for download failures. That prevents request
storms to web servers from applications trying to open a file in an endless loop. The
backoff is triggered by consequtive download errors within 10 seconds.

6.2.3. Keep-Alive
Although the HTTP protocol overhead is small in terms of data volume, in high latency
networks we suffer from the bare number of requests: Each request-response cycle
has a penalty of at least the network round trip time. Using plain HTTP/1.0, this
results in at least 3x(round trip time) additional running time per file download for
TCP handshake, HTTP GET, and TCP connection finalisation. By including the
Connection: Keep-Alive header into HTTP requests, we advise the HTTP server
end to keep the underlying TCP connection opened. This way, overhead ideally drops
to just round trip time for a single HTTP GET. The impact of the keep-alive feature
is shown in Figure 6.4.

This feature, of course, somewhat sabotages a server-side load balancing. However,
exploiting the HTTP keep-alive feature does not affect scalability per se. The servers

2The usual proxy notation rules apply, like http://proxy1:8080|http://proxy2:8080;DIRECT

23

6. Under the Hood

Web Server

CernVM

S
Y

N

S
Y

N
,
A
C

K

S
Y

N

H
T

T
P

G
E
T 2

0
0

O
K

F
IN

,
A
C

K

A
C

K

F
IN

,A
C

K A
C

K
Figure 6.4.: Impact of keep-alive header on multiple file downloads.

and proxies may safely close idle connections anytime, in particular if they run out of
resources. In practice, the maximum connection duration has to be set carefully for
the HTTP deamon.

6.2.4. Cache Control
In a limited way, CernVM-FS advises intermediate web caches how to handle its
requests. Therefor it uses the Pragma: no-cache and the Cache-Control: no-cache
headers in certain cases. These cache control headers apply to both, forward proxies as
well as reverse proxies. However, this is by no means a guarantee that intermediate
proxies fetch a fresh original copy (though they should).

By including these headers, CernVM-FS tries to not fetch outdated cache copies.
This has to be handled with care, of course, in order to not overload the repository
source server. In case CernVM-FS downloads a corrupted file from a proxy server,
it retries having the HTTP no-cache header set. This way, the corrupted file gets
replaced in the proxy server by a fresh copy from the backend.

6.2.5. Identification Header
CernVM-FS sends a custom header (X−CMFS2) to be identified by the web server.
In CernVM we use this header to rewrite URL’s to the respective repository format
for CernVM-FS version 1 or CernVM-FS version 2. If you have set the CernVM
GUID, this GUID is also transmitted.

6.3. Disk Cache
The disk cache stores files with a name according to their SHA-1 content hash. Thereby
the disk cache is decoupled from any specific directory hierarchy. Identical files stored
in different directories are stored only once.

Each running CernVM-FS instance has a separate cache directory. The local cache
directory (directories 00, . . . , ff) can be accessed in parallel to a running CernVM-FS,

24

6. Under the Hood

Field Type
SHA1 160 Bit Integer
Size Integer
Access Sequence Integer
Pinned Integer
File type (chunk or file catalog) Integer

Table 6.2.: Cache catalog table structure.

i. e. files can be deleted for instance anytime3. During the download, files reside in the
txn directory. At the very latest point they are renamed into their content addressable
SHA1 names atomically by rename().

6.3.1. Managed Disk Cache
The traditional CernVM-FS disk cache just grows until the system runs out of
disk space. Files may be deleted manually from the cache directories, but this is a
cumbersome job.

By using a managed disk cache, CernVM-FS maintains cache size restrictions and
replaces files according to the least recently used (LRU) strategy [PS06]. In order to
keep track of files sizes and relative file access times, CernVM-FS sets up another
SQLite database in the cache directory, the cache catalog. The cache catalog contains
a single table; its structure is shown in Table 6.2.

Note that CernVM-FS does not enforce a certain cache size. Instead CernVM-FS
works with two customizable soft limits, the cache quota and the cache threshold. When
exceeding the cache quota, files are deleted until the overall cache size is less than or
equal to the cache theshold. The cache quota is for data files as well as file catalogs.
Currently loaded catalogs are pinned in the cache, i. e. they will not be deleted. On
unmount, pinned file catalogs are updated with the highest sequence number.

The cache catalog can be constructed from scratch on mount. Re-constructing the
cache catalog is necessary when the managed cache is used for the first time and
every time when “unmanaged” changes occurred to the cache directory. This happens,
for instance, if CernVM-FS is mounted with the managed cache feature turned off.
Re-construction has to be triggered manually.

For performance reasons, the cache management runs as a separate thread. This
thread takes care of updating access times and deleting of files when necessary. The
CernVM-FS open function talks via pipes to that thread. A typical compilation
benchmark on CernVM-FS shows 1%-2% additional running time caused by the
managed cache.

3While the design supports it, we however strongly suggest not to tamper with the cache directory
because it will make the local LRU database inconsistent.

25

6. Under the Hood

"1481074921.015","1","/root/i686-pc-linux-gnu/include/TQObject.h","OPEN"
"1481074931.030","1","/root/i686-pc-linux-gnu/include/KeySymbols.h","OPEN"
"1481074931.220","3","/root/i686-pc-linux-gnu/include/KeySymbols.h","READ (TRY)"
"1481074964.565","3","/root/i686-pc-linux-gnu/include/KeySymbols.h","READ 7407@0"
"1481074965.005","1","/root/i686-pc-linux-gnu/include/TRootCanvas.h","OPEN"

Figure 6.5.: Example snippet of a trace log. The first columns stores time stamps as
number of microseconds starting from the Unix epoch. The second column
stores the event type. Negative event types are reserved for CernVM-FS
internal events.

6.4. File System Traces
CernVM-FS has an optional file system operations tracer. The tracer creates logs of
usage, which can—for instance—be used as profiling information for pre-fetching. The
trace file is created in CSV format (see Figure 6.5).

The tracing runs in a separate thread and adapts the tread-safe trace buffer, a
technique used for multi-thread debugging [AR06, Chapter 8]. Since traces are kept
in a memory ring buffer4 and written to disk in blocks of thousands of lines, the
performance overhead for tracing is almost negligible; for our application benchmarks
it is below measurement error.

6.5. System Interface
Since CernVM-FS is a read-only file system, there are only few non-trivial call-back
functions to implement. These call-back functions provide the system interface.

6.5.1. mount / re-mount

On mount, the file catalog has to be loaded. First, the file catalog checksum .cvmfspublished
is loaded. If CernVM-FS runs in trusted mode or if it finds a signature in the check-
sum, the catalog is only accepted on successful validation of the signature. In order to
validate the signature, the certificate and the white-list are downloaded in addition if
not found in cache. If the download failes for whatever reason, CernVM-FS tries to
load a local file catalog copy. As long as all requested files are in the disk cache as well,
CernVM-FS continues to operate even without network access (offline mode).

If there is no local copy of the catalog checksum or the downloaded checksum and
the cache copy differ, CernVM-FS downloads a fresh copy of the file catalog. If the
checksum matches the file catalog, the cache copies are replaced by the downloaded
versions and the new catalog is mounted. Otherwise, the procedure is repeated avoiding
intermediate proxy servers (see Section 6.2.4).

4Usually, each trace record requires two atomic fetch-and-add operations.

26

6. Under the Hood

6.5.2. stat

Requests for file attributes are entirely served from the mounted catalog, i. e. there
is no network traffic involved. This function is called as pre-requisite to other file
system operations and therefore the most frequently called FUSE callback. In order to
minimize relatively expensive SQLite queries, CernVM-FS uses a 2-way associative
/ direct-mapped negative and positive hybrid cache, having the first bits of the MD5
path name hash as key. The size of the cache is determined according to compilation
benchmarks monitored with Valgrind [Wei] and according to LHCb application
benchmarks.

Additionally, this callback takes care of the catalog TTL. If the TTL is expired, the
catalog is re-mounted on the fly. Note that a re-mount might possibly break running
programs. We rely on careful repository publishers that produce more or less immutable
directory trees, i. e. new repository versions just add files.

If a directory with a nested catalog is accessed for the first time, the respective catalog
is mounted in addition to the already mounted catalogs. Loading nested catalogs is
transparent to the user.

6.5.3. readlink

A symlink is served from the file catalog. As a special extension, CernVM-FS detects
environment variables in symlink strings written as $(VARIABLE). Those variables
are expanded by CernVM-FS dynamically on access (in the context of the cvmfs
process). This way, a single symlink can point to different locations depending on
the environment. This is helpful, for instance, to dynamically select software package
versions residing in different directories.

6.5.4. readdir

A directory listing is served by an SQL query on the file catalog. Though the “parent”-
column is indexed (cf. Table 6.1), this is a relatively slow function. We expect directory
listing to happen rather seldom.

6.5.5. open / read

The open() call has to provide Fuse with a file handle for a given path name. In
CernVM-FS file requests are always served from the disk cache. The Fuse file handle
is a file descriptor valid in the context of the CernVM-FS process. It points into the
disk cache directory. Read requests are translated into the pread() system call.

Opening a path name is done in the following steps:

1. The path name is hashed with MD5

2. Using this MD5 hash, the file catalog is asked for the SHA1 key for the given
path name

3. If the file is not in the disk cache, it is downloaded from the repository

27

6. Under the Hood

6.5.6. getxattr

CernVM-FS uses extended attributes to display additional repository information.
Currently there are two supported attributes:

hash Shows the SHA-1 hash of a regular file as listed in the file catalog. For a directory,
shows the SHA-1 hash of the 𝜇-catalog, if available.

lhash Shows the SHA-1 hash of a regular file as stored in the local cache, if available.

revision Shows the file catalog revision of the mounted root catalog, an auto-increment
counter increased on every synchronization of shadow tree and repository. The
value is the same for all directories, symbolic links and regular files of the mount
point.

pid Shows the CernVM-FS process id.

version Shows the version of the loaded CernVM-FS binary.

expires Shows the remaining life time of the hosting (nested) file catalog in minutes.

maxfd Shows the maximum number of file descriptors available to file system clients.

usedfd Shows the number of file descriptors currently issued to file system clients.

nioerr Shows the total number of I/O errors encoutered since mounting.

proxy Shows the currently active HTTP proxy.

host Shows the currently active HTTP replica server.

uptime Shows the time passed since mounting in minutes.

nclg Shows the number of currently loaded nested catalogs.

nopen Shows the overall number of open() calls since mounting.

ndwonload Shows the overall number of downloaded files since mounting.

timeout Shows the timeout for proxied connections in seconds.

timeout_direct Shows the timeout for direct connections in seconds.

rx Shows the overall amount of downloaded kilobytes.

speed Shows the average download speed.

Extended attributes can be queried using the attr command. For instance, attr -g
hash /cvmfs/atlas.cern.ch/ChangeLog returns the SHA-1 key of the file at hand.
The extended attributes are used by the cvmfs_config stat command in order to
show a current overview of health and performance numbers.

28

6. Under the Hood

6.5.7. Dynamic Configuration
CernVM-FS is capable of communicating to the user at runtime. Thereby certain
parameters can be configured and changed while the file system is mounted. To do so,
CernVM-FS sets up a temporary socket in the cache directory, cvmfs_io. Commu-
nication is based on a simple command-response scheme. The enclosed cvmfs-talk
script takes care of writing to and reading from the socket. Currently CernVM-FS
handles the following commands:

flush Flushes the entries in the trace buffer from memory to disk.

cache size Returns the combined size of the data files and file catalogs in the (man-
aged) disk cache.

cache list Returns the list of downloaded files that reside in the (managed) disk
cache.

cache list catalog Returns the list of downloaded file catalogs that reside in the
(managed) disk cache.

cache list pinned Returns the list of pinned (loaded) file catalogs that reside in the
(managed) disk cache.

cleanup <MB> Unlinks files from the (managed) disk cache until cache size is less than
or equal to the specified size in MB.

clear file <path> Removes <path> from local cache.

mountpoint Gets the mount point.

remount Checks for a new root file catalog.

revision Gets the currently mounted repository revision.

max ttl info Gets the maximum file catalog TTL.

max ttl set <minutes> Sets the maximum file catalog TTL.

host info Gets the host chain and their RTT, if already probed.

host probe Orders the host chain according to round trip time. This happens auto-
matically every 1000 downloads.

host switch Switches to the next host in the chain.

host set <host chain> Sets a new host chain.

proxy info Gets the currently active proxy server.

proxy rebalance Randomly selects a new proxy server from the current load-balancing
group.

29

6. Under the Hood

proxy group switch Switches to the next load-balance proxy group in the chain.

proxy set <proxy list> Sets a new chain of load-balance proxy groups.

timeout info Gets the network timeouts with and without proxy.

timeout set <proxy> <direct> Sets the network timeouts in seconds.

reset error counters Resets the internal counter for failed I/O operations.

pid Returns the process id of the cvmfs2 main process (not the watchdog).

version Returns the version number of the running CernVM-FS instance.

version patchlevel Returns the version patchlevel of the running CernVM-FS
instance.

open catalogs Returns mount point, last modified timestamp, and expiry date of
currently loaded catalogs. These are not necessarily all cached catalogs.

The cvmfs-talk command is also used by the cvmfs service in order to reload the
configuration. Reloadable are all parameters with a “set” variant.

6.6. Repository Synchronization
Repositories are not immutable, every now and then they get updated. This might
be installation of a new release or a patch for an existing release. But, of course, each
time only a small portion of the repository is touched, say 2GB out of 100GB. In
order to not process an entire shadow tree on each synchronization, we use a file system
change log as basis of the synchronization. To this end, we use a CernVM-FS filter
for redirfs [Hrb05] (cf. Fig. 6.6). The CernVM-FS filter intercepts VFS system calls
that might change file data or file meta data on a given directory sub-tree. We refer to
such VFS calls as writing calls.

CernVM-FS ships with two kernel modules, redirfs and cvmfsflt. These modules
have to be loaded in this order. Once loaded, they are configured via sysfs [Moc05].
See Table 6.3 for a list of control files.

The CernVM-FS VFS filter has three modes of operation:

Normal Operation Capture writing VFS calls to the call buffer, whose tail is connected
to a character device.

Call Buffer Full Block writing VFS calls. If the O_NONBLOCK flag is set, do not block
but return EAGAIN.

Synchronizing Repository Forbid writing VFS calls (return EPERM).

In order to set up file system capturing, one can use the following commands:

30

6. Under the Hood

process 1 · · · process 𝑛

user space

kernel space

VFS
inode cache
dentry cache

nfsd

redirfs

· · ·Ext3 NFS

/dev/cvmfs

filter 1

cvmfsflt

filter 𝑚

...

...

call
buffer

syscall syscall

cvmfs_sync

Figure 6.6.: CernVM-FS filter for redirfs: Writing VFS calls are captured and
written to a character device to create a file system change log.

File Permission Purpose
lockdown r/w Forbid writing VFS calls (during synchronization)
noll r Number of remaining entries in the VFS call buffer
nowops r Number of remaining writing VFS calls

Table 6.3.: Sysfs control files for cvmfsflt in /sys/fs/redirfs/filters/cvmfsflt.

31

6. Under the Hood

modprobe r e d i r f s
2 modprobe cvm f s f l t

i f [! −c /dev/cvmfs] ; then
4 major=‘grep cvmfs /proc / dev i c e s | awk ’{ p r i n t $1 } ’ ‘

mknod /dev/cvmfs c $major 0
6 f i

echo −n "a : i :$MY_FILTER_PATH" > / sys / f s / r e d i r f s / f i l t e r s / c vm f s f l t / paths

The data stream of the character device has to be stored into a log file for further
processing with cvmfs_sync. If the character device is not read, the call buffer will
eventually become full and writing VFS calls to the filtered path are blocked by the
CernVM-FS filter.

The following steps have to be done before starting a synchronization run:

1. Lock the filtered path down using the sysfs control file (cf. Table 6.3)

2. Wait for the remaining writing VFS call counter to become zero

3. Wait for the remaining call entry buffer counter to become zero

In order to unload, one can use the following commands:

1 echo −n "c\0" > / sys / f s / r e d i r f s / f i l t e r s / c vm f s f l t / paths
echo −n "1\0" > / sys / f s / r e d i r f s / f i l t e r s / c vm f s f l t / un r e g i s t e r

3 rmmod cvmf s f l t

32

A. Available RPMs

The CernVM-FS software is available in form of several RPM packages:

cvmfs-release Adds the CernVM-FS yum repository.

cvmfs-keys Contains the public key for signature verification of repositories in the
cern.ch domain.

cvmfs Contains the Fuse module and additional client tools. It has dependencies to
cvmfs-keys, fuse, and autofs.

cvmfs-init-scripts Contains compatibility scripts for specific repositories. Mainly, the
symlinks from /opt/repository to /cvmfs/repository.cern.ch are maintained. All
repositories are supposed to migrate to the /cvmfs namespace in the near future.
Depends on cvmfs.

cvmfs-auto-setup Only available through yum. This is a wrapper for cvmfs_config setup.
This is supposed to provide automatic configuration for the ATLAS Tier3s. De-
pends on cvmfs.

cvmfs-replica Contains the tools to replicate CernVM-FS repositories.

cvmfs-server Contains the CernVM-FS server tools for creating new repositories.
Depends on cvmfs-keys and httpd.

redirfs, kmod-redirfs Kernel module framework used by the CernVM-FS file system
change log filter.

cvmfsflt, kmod-cvmfsflt The CernVM-FS file system change log filter.

33

Bibliography

[AR06] Shameem Akhter and Jason Roberts. Multi-Core Programming. Intel Press,
2006.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0. RFC 1945, Internet Engineering Task Force, May 1996.

[CGL+10] G. Compostella, S. Pagan Griso, D. Lucchesi, I. Sfiligoi, and D. Thain.
CDF software distribution on the Grid using Parrot. Journal of Physics:
Conference Series, 219, 2010.

[Dan] Daniel Stenberg et al. libcurl. http://curl.haxx.se/libcurl.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,
Internet Engineering Task Force, June 1999.

[H+] Richard Hipp et al. SQLite. http://www.sqlite.org.

[Hrb05] Frantisek Hrbata. Callback framework for VFS layer. Master’s thesis, Brno
University of Technology, 2005.

[HS] Csaba Henk and Miklos Szeredi. Filesystem in Userspace (FUSE). http:
//fuse.sourceforge.net.

[Moc87] P.V. Mockapetris. Domain names - implementation and specification. RFC
1035, Internet Engineering Task Force, November 1987.

[Moc05] Patrick Mochel. The sysfs filesystem. In Proc. of the Annual Linux Sympo-
sium, 2005.

[PS06] Konstantinos Panagiotou and Alexander Souza. On adequate performance
measures for paging. Annual ACM Symposium on Theory Of Computing,
38:487–496, 2006.

[Sch03] Philip Schwan. Lustre: Building a file system for 1,000-node clusters. In
Proc. of the 2003 Linux Symposium, pages 380–386, 2003.

[The] The OpenSSL Software Foundation. OpenSSL. http://www.openssl.org/
docs/crypto/crypto.html.

[Wei] Josef Weidendorfer. Callgrind. http://valgrind.org/info/tools.html#
callgrind.

34

http://curl.haxx.se/libcurl
http://www.sqlite.org
http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/crypto/crypto.html
http://valgrind.org/info/tools.html#callgrind
http://valgrind.org/info/tools.html#callgrind

	Overview
	Getting Started
	Setting up yum for CernVM-FS
	Installation
	Usage
	Debugging Hints

	Installation from Sources
	Installation of the CernVM-FS Fuse Module
	Configuration of CernVM-FS
	Using Multiple Replicas

	Manually Mounting the CernVM-FS Fuse Module
	Debugging

	Setting up a Local Squid Proxy
	Creating a Repository
	CernVM-FS Respository Out of the Box

	Under the Hood
	File Catalog
	Nested Catalogs
	-Catalogs
	Catalog Signature

	Exploited HTTP Features
	Forward Proxies
	Timeouts
	Keep-Alive
	Cache Control
	Identification Header

	Disk Cache
	Managed Disk Cache

	File System Traces
	System Interface
	mount / re-mount
	stat
	readlink
	readdir
	open / read
	getxattr
	Dynamic Configuration

	Repository Synchronization

	Available RPMs
	Bibliography

